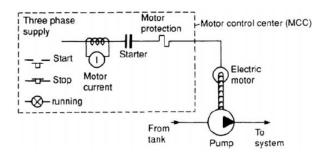
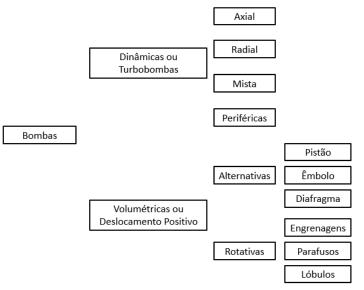
Hidráulica e Pneumática BOMBAS E COMPRESSORES

R. Sobral


DEPARTAMENTO DE ENGENHARIA MECÂNICA

rodolfo.sobral@cefet-rj.br


Bombas Hidráulicas

Succionam óleo de um reservatório e recalcam para o circuito hidráulico.

Tipos de Bombas

Tipos de Bombas

VÍDEO 01 VÍDEO 02

Toyota 4 Runner

Comparação de Tipos de Bombas

Туре	Maximum pressure (bar)	Maximum flow (l min ⁻¹)	Variable displacement	Positive displacement
Centrifugal	20	3000	No	No
Gear	200	375	No	Yes
Vane	200	400	Yes	Yes
Axial piston (swash plate)	350	750	Yes	Yes
Axial piston (valved)	500	1500	Yes	Yes
In-line piston	1000	100	Yes	Yes

Vantagens Sistema Hidráulico

- Fechado;
- Elevadas pressões;
- Tempo de resposta.

Desvantagens Sistema Hidráulico

- Linha de retorno;
- Imprecisão;
- Fluido escasso.

Preparação do Sistema Hidráulico

- Filtros
- Manômetro
- By-pass
- Válvulas
- Linha de retorno

Regulação da Pressão

Mediante inversores de frequência, válvulas e linhas auxiliares de retorno.

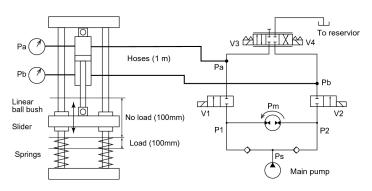
Critérios de Falha - Cavitação

Ondas de choques escoam as pás do impelidor gerado pelo estouro das bolhas de ar, surgidas no encontro dessas bolhas com uma região de mais alta pressão de vapor.

- Causas
- Selos e gaxetas gastos;
- Baixo nível de óleo;
- Linha de retorno acima do nível de líquido.
 - Consequências
- Vibração
- Alteração das curvas características

Modelagem Matemática

$$NPSH_{disp} = h_s + rac{p_a - p_v}{\gamma}$$
 $NPSH_{req} = h_{if} + rac{v_1^2}{2g} + rac{\lambda \cdot v_{r1}}{2g}$

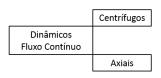

$$h_{1-2} = \left(\frac{p_1}{\rho g} + \frac{\phi_1 \overline{v}_1^2}{2g} + z_1\right) - \left(\frac{p_2}{\rho g} + \frac{\phi_2 \overline{v}_2^2}{2g} + z_2\right) = -\frac{\dot{Q}}{\dot{m}g} + \frac{(u_2 - u_1)}{g}$$
$$\dot{W} = \dot{m}gH$$

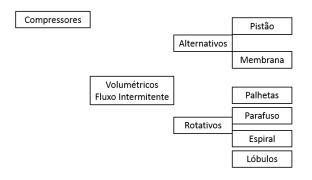
$$T_{eixo} = \dot{m} (r_2 v_{t_2} - r_1 v_{t_1})$$

$$\dot{W} = \dot{m} (r_2 v_{t_2} - r_1 v_{t_1}) w = \dot{m} (u_2 v_{t_2} - u_1 v_{t_1})$$

Circuito Hidráulico

https://link.springer.com/chapter/10.1007/978-3-030-05321-5_8


Compressores de Ar


Succionam ar do meio e descarregam ar comprimido para um reservatório a montante do circuito pneumático.

Tipos de Compressores

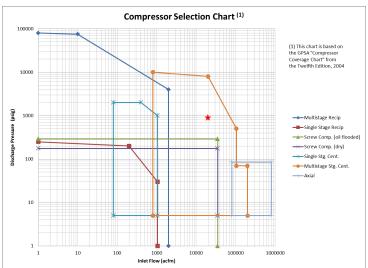
CEFET

922.7738-0 220/380/440V - trifásico

MAX MSV 20/250 922.7789-0 220V - trifásico MTA 922.7790-0 220/380V - trifásico MTA 922.7735-0 220/380V - trifásico

	20 pcm				
	566 I/min				
		175 lbf/pol ²			
		12 bar			
		135 lbf/pol ²			
		9,3 bar			
Unidade Compressora		2			
		2-V			

5 hp	
3,7 kW	
2	
261 L	
170 kg	
221 kg	
540 x 1020 x 1700 mm	


CEFET

VÍDEO i VÍDEO ii

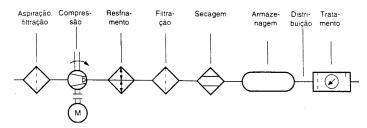
17 / 27

Comparação de Tipos de Compressores

18 / 27

Vantagens Ar Comprimido

- Obtenção;
- Sem riscos de faísca;
- Armazenamento;
- Não contaminante;
- Não necessita de linhas de retorno.


Desvantagens Ar Comprimido

- Umidade;
- Baixa Viscosidade;
- Compressibilidade.

Preparação do Ar Comprimido

- Qualidade (água, óleo e impurezas);
- Filtros;
- Resfriamento ($T=10.T_{\infty}$ agridem as tubulações);
- Secagem (eliminar condensado do ar resfriado);
- Distribuição.

Regulação da Pressão

O reservatório faz com que demandas alternadas de emissão de gás não causem danos na operação final, situações atuais já são reguladas via inversor de frequência.

Critérios de Falha - Surge e Stonewall

Surge

Vazão de sucção mínima a fim de evitar instabilidades no escoamento - fluxo reverso (destruição de mancais, pás, rotor, eixo e selagem).

Stonewall

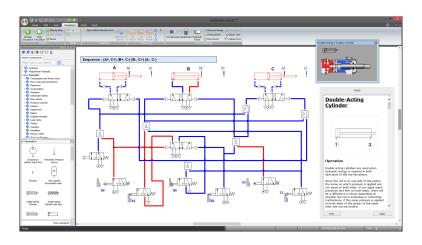
Vazão máxima de operação a fim de evitar sobrecarga e queima do equipamento. Para altas taxas de fluxo modificações no rotor devem ser feitas.

Modelagem Matemática

Compressores Centrífugos

$$\dot{W} = \frac{\dot{m} \cdot H_k}{\eta_k \cdot \eta_{mec}}$$

$$H_k = rac{k}{k-1} \cdot R \cdot T_0 \cdot n \left[\left(\sqrt[n]{r_p} \right)^{rac{k-1}{k}} - 1 \right]$$


Compressores Rotativos

$$\dot{W} = \frac{\dot{m} \cdot w_k}{\eta_k \cdot \eta_{mec}}$$

$$w_{k} = \frac{k}{k-1} \cdot R \cdot T_{0} \cdot \left[\left(\frac{p_{1}}{p_{0}} \right)^{\frac{k-1}{k}} - 1 \right] + \cdots + \frac{k}{k-1} \cdot R \cdot T_{n-1} \cdot \left[\left(\frac{p_{n}}{p_{n-1}} \right)^{\frac{k-1}{k}} - 1 \right]$$

Circuito Pneumático

https://www.famictech.com/edu/pneumatics.html

Tipos de Compressores

VÍDEO 03 VÍDEO 04

Someone's sitting in the shade today because someone planted a tree a long time ago

Warren Buffett

27 / 27