TERMODINÂMICA 1º LEI DA TERMODINÂMICA

R. Sobral

DEPARTAMENTO DE ENGENHARIA MECÂNICA

rodolfo.sobral@cefet-rj.br

Programa do Curso - Avaliação 01

- Breve Revisão
- Lei Zero da Termodinâmica
- Trabalho e Calor
- 1º Lei da Termodinâmica
- 2º Lei da Termodinâmica
- Substâncias Puras

Ementa

- Sistemas Fechados
 - Postulados

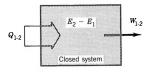
- Sistemas Abertos
 - Postulados

Primeira Lei da Termodinâmica

Segundo Max Planck a primeira lei da termodinâmica nada mais é do que o princípio da conservação de energia aplicada a fenômenos que envolvem a produção ou absorção de calor.

Princípio de Conservação da Energia

A primeira lei da termodinâmica para um sistema fechado pode ser escrita como:



$$dE = \delta Q - \delta W$$

ou

$$E_2 - E_1 = Q_{1-2} - W_{1-2}$$

dE = variação de energia do sistema

 $\delta Q = \text{calor adicionado ao sistema}$

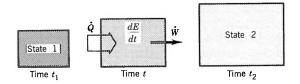
ECEFET/RJ

5 / 64

 $\delta W=$ trabalho realizado sobre o sistema

Princípio de Conservação da Energia

Truesdell introduziu o conceito do tempo na descrição de processos, assim o princípio de conservação de energia pode ser escrito na forma de taxa de variação como:



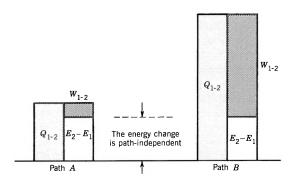
$$\frac{dE}{dt} = \dot{Q} - \dot{W}$$

Princípio de Conservação da Energia

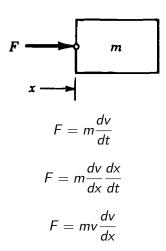
 $\frac{dE}{dt}$ = taxa de aumento da energia total do sistema

 $\dot{Q}={\sf taxa}$ de transmissão de calor adicionado ao fluido do sistema

 $\dot{W} = ext{taxa}$ de trabalho realizado sobre o fluido do sistema



Energia Cinética de Translação



Energia Cinética de Translação

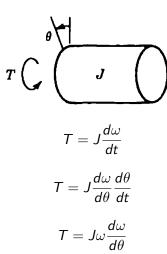
$$\int_{x_1}^{x_2} F dx = \int_{v_1}^{v_2} mv dv$$

$$\int_{x_1}^{x_2} F dx = m \frac{v^2}{2} \Big|_{1}^{2}$$

$$\int_{x_1}^{x_2} F dx = \frac{1}{2} m \left(v_2^2 - v_1^2 \right)$$

9 / 64

Energia Cinética de Rotação



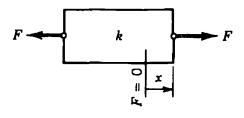
Energia Cinética de Rotação

$$\int_{\theta_1}^{\theta_2} T d\theta = \int_{\omega_1}^{\omega_2} J \omega d\omega$$

$$\int_{\theta_1}^{\theta_2} T d\theta = J \frac{\omega^2}{2} \Big|_1^2$$

$$\int_{\theta_1}^{\theta_2} T d\theta = \frac{1}{2} J \left(\omega_2^2 - \omega_1^2 \right)$$

Energia Elástica de Translação



$$F = kx$$

$$dE = \int_{x_1}^{x_2} F dx$$

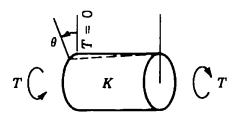
Energia Elástica de Translação

$$dE = \int_{x_1}^{x_2} kx \, dx$$

$$dE = k \frac{x^2}{2} \Big|_{x_1}^{x_2}$$

$$\int_{x_1}^{x_2} F dx = \frac{1}{2} k \left(x_2^2 - x_1^2 \right)$$

Energia Elástica de Rotação



$$T = k\theta$$

$$dE = \int_{ heta_1}^{ heta_2} T d heta$$

14 / 64

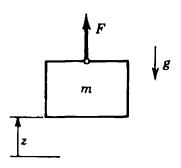
Energia Elástica de Rotação

$$dE = \int_{\theta_1}^{\theta_2} k\theta \, d\theta$$

$$dE = k \frac{\theta^2}{2} \Big|_{\theta_1}^{\theta_2}$$

$$\int_{\theta_1}^{\theta_2} T d\theta = \frac{1}{2} k \left(\theta_2^2 - \theta_1^2 \right)$$

Energia de Atração Gravitacional



$$F = mg$$

$$dE = \int_{z_1}^{z_2} F dz$$

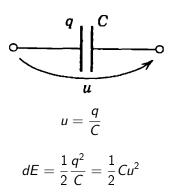
Energia de Atração Gravitacional

$$dE = \int_{z_1}^{z_2} mg \, dz$$

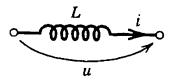
$$dE = mgz \Big|_{z_1}^{z_2}$$

$$\int_{z_1}^{z_2} F dz = mg \, (z_2 - z_1)$$

Capacitância Elétrica



Indutância Elétrica



$$\Phi = Li$$

$$dE = \frac{1}{2}Li^2 = \frac{1}{2}\frac{\Phi^2}{L}$$

Energia Interna

Propriedade extensiva representando o somatório das energias cinéticas e potenciais de todas as partículas que constituem o sistema, está relacionada com as atrações intermoleculares, movimentos de rotação, translação e vibração de moléculas, íons e núcleons que compõem os átomos.

Variação de Energia

$$E_2 - E_1 = U_2 - U_1 + \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 + mgz_2 - mgz_1 + (E_2' - E_1')$$

 $\textit{E}_{2}-\textit{E}_{1}
ightarrow extsf{variação}$ de energia total

 $U_2-U_1
ightarrow$ variação de energia interna

 $1/2mv_2^2-1/2mv_1^2
ightarrow$ variação de energia cinética

 $\mathit{mgz}_2 - \mathit{mgz}_1
ightarrow \mathsf{varia}$ ção de energia potencial gravitacional

 $(E_2'-E_1')
ightarrow$ outros tipos de acúmulo de energia macroscópica

Entalpia

Ao analisar processos nos deparamos com combinações de propriedades termodinâmicas que representam outras propriedades também termodinâmicas.

Suponha processo quase-estático de um gás qualquer, isobárico sem presença de energias cinética e potencial cujo único trabalho presente seja aquele referente ao movimento longitudinal da fronteira, matematicamente:

$$dU =_1 Q_2 - {}_1W_2$$

Analisando-se gases

$$_{1}W_{2}=\int_{1}^{2}PdV=P(V_{2}-V_{1})$$

Entalpia

$$_{1}Q_{2} = U_{2} - U_{1} + {_{1}W_{2}}$$

$$_{1}Q_{2} = U_{2} - U_{1} + PV_{2} - PV_{1}$$

$$_{1}Q_{2}=U_{2}+PV_{2}-(U_{1}+PV_{1})$$

Variável entalpia (H = U + PV):

$$_{1}Q_{2}=H_{2}-H_{1}$$

$$_1Q_2=dH$$

Reações exotérmicas : dH < 0Reações endotérmicas : dH > 0

Calor Específico

Quantidade de calor necessária para elevar a temperatura de uma unidade de massa da substância em um grau.

Desprezando-se as energias cinética e potencial e admitindo que a substância seja simples e compressível com processo quase-estático, deduzem-se os calores específicos a pressão e a volume constante.

Vale ressaltar que para sólidos e líquidos geralmente admite-se que: dh=du

Calor Específico a Pressão Constante

$$_1Q_2=dH$$

$$mc_p dT = dH$$

Dividindo ambos os lados pela massa:

$$c_p dT = dh$$

$$c_p = \frac{dh}{dT}$$

Calor Específico a Volume Constante

$$dU =_1 Q_2 - {}_1W_2$$

Como volume é constante $V_1 = V_2$

$$_{1}W_{2}=\int_{1}^{2}PdV=P(V_{2}-V_{1})$$

$$dU =_1 Q_2$$

$$mc_{v}dT = dU$$

Dividindo ambos os lados pela massa:

$$c_{v}dT=du$$

$$c_{v} = \frac{du}{dT}$$

Ementa

- Sistemas Fechados
 - Postulados

- Sistemas Abertos
 - Postulados

Leis da Conservação

A termodinâmica e a mecânica dos fluidos são baseadas nas leis da conservação da massa, momento e energia. Tais leis podem ser descritas na forma diferencial/local quando aplicadas num ponto e também na forma integral/global quando aplicadas numa região extendida.

Leis da Conservação

Frequentemente há a necessidade na conversão de integrais de volume ou superfície utilizando-se do teorema da divergência de Gauss:

$$\int_{V} \frac{\partial \mathbf{F}}{\partial x_{i}} dV = \int_{A} dA_{i} \mathbf{F}$$

Sendo ${\it F}$ um tensor de ordem qualquer (vetores ou escalares), ${\it V}$ pode ser tanto volume fixo quanto volume material e ${\it A}$ é a superfície de controle.

Derivada Temporal de Integrais de Volume

A derivada apresentada abaixo geralmente aparece na aplicação das leis da conservação

$$\frac{d}{dt} \int_{V(t)} \mathbf{F} dV$$

Sendo F um tensor de ordem qualquer e V(t) uma região fixa ou região de mesmo movimento do fluido.

Considerando-se o caso geral em que V(t) não é nem volume fixo nem volume material, ou seja, as superfícies de volume estão em movimento com velocidade distinta do fluido local.

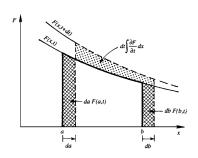
Teorema de Leibniz

Técnica para diferenciar integrais cujo termo integrando ${\pmb F}$ e limites de integração são funções de mesma variável.

Analisando unidimensionalmente,

$$\frac{d}{dt}\int_{x=a(t)}^{b(t)}F(x,t)dx=\int_{a}^{b}\frac{\partial F}{\partial t}dx+\frac{db}{dt}F(b,t)-\frac{da}{dt}F(a,t)$$

Graficamente



Teorema de Leibniz

Generalizando o teorema de Leibniz

$$\frac{d}{dt} \int_{V(t)} F(x,t) dV = \int_{V(t)} \frac{\partial F}{\partial t} dV + \int_{A(t)} dA. u_A F$$

Sendo u_A o vetor velocidade no contorno e A(t) a superfície do volume arbitrado V(t)

Volume Fixo

Para volume fixo $u_A = 0$, portanto

$$\frac{d}{dt}\int_{V} F(x,t)dV = \int_{V} \frac{\partial F}{\partial t} dV$$

demonstrando que a derivada temporal é referente a uma integral cujo limite é fixo, ou seja, não é função do tempo.

Volume Material

Para um volume de material V(T) movendo-se na mesma velocidade do fluido, de modo que $u_A=u$, sendo u a velocidade do fluido. Então

$$\frac{D}{Dt} \int_{V} \mathbf{F}(\mathbf{x}, t) dV = \int_{V} \frac{\partial \mathbf{F}}{\partial t} dV + \int_{A} d\mathbf{A}. \mathbf{u} \mathbf{F}$$

Teorema do Transporte de Reynolds

Aplicando-se o Teorema da Divergência de Gauss e utilizando o Princípio da Conservação da Massa, tem-se:

$$\frac{D}{Dt} \int_{V} \rho f \, dV = \int_{V} \rho \frac{Df}{Dt} dV$$

Relação na qual sistema e volume de controle coexistem na mesma configuração num instante de tempo específico: $V \equiv \Omega$. Sendo f um campo espacial qualquer e ρ a massa específica.

35 / 64

Conservação da Massa

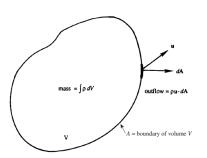
Para um volume fixo no espaço utilizando o Teorema de Leibniz

$$\frac{d}{dt} \int_{V} \rho \, dV = \int_{V} \frac{\partial \rho}{\partial t} dV$$

Sendo $\int_A
ho u dA$ o fluxo de massa cruzando o volume de controle através de um elemento de área dA

$$\int_{V} \frac{\partial \rho}{\partial t} dV = -\int_{A} \rho u dA$$

Conservação da Massa - Forma Integral



$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV + \int_{\partial \Omega} \rho \boldsymbol{v} d\boldsymbol{S} = 0$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV + \int_{\partial \Omega} \rho(\boldsymbol{v}\boldsymbol{n}) dS = 0$$

ou

Conservação da Massa - Forma Diferencial

A forma diferencial pode ser obtida através da transformação na integral de superfície em integral de volume com o auxílio do Teorema da Divergência

$$\int_{A} \rho \boldsymbol{u} d\boldsymbol{A} = \int_{V} \nabla \cdot (\rho \boldsymbol{u}) dV$$

Portanto a equação fica

$$\int_{V} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) \right] dV = 0$$

Como $abla.(
ho oldsymbol{u}) =
ho
abla. oldsymbol{u} + oldsymbol{u}. oldsymbol{grad}
ho$:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$$
 ou $\frac{1}{\rho} \frac{D\rho}{Dt} + \nabla \cdot u = 0$

Quantidade de Movimento

As equações da quantidades de movimento linear e angular serão abordados nas disciplinas Mecânica dos Fluidos e Máquinas de Fluxo.

Hipótese de Equilíbrio Termodinâmico Local

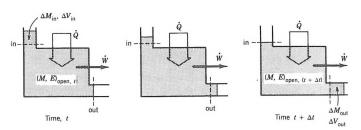
$$E \equiv \int_{V_{-}} \rho e dV \rightarrow \text{energia total}$$

$$U \equiv \int_{V_m}
ho u dV
ightarrow {
m energia}$$
 interna

$$K \equiv \int_{V_m}
ho rac{1}{2} oldsymbol{v}. oldsymbol{v} dV
ightarrow$$
 energia cinética

$$E = \int_{V_m} \rho\left(u + \frac{1}{2}\boldsymbol{v}.\boldsymbol{v}\right) dV$$

A equação da energia para um corpo contínuo conhecida por primeira lei da termodinâmica, para sistemas abertos possui como características interações de calor e trabalho por unidade de tempo além do fluxo de massa cruzando os limites do corpo.



Consiste num axioma que estabelece que: a taxa de variação da quantidade de energia de um corpo (cinética + interna) é igual a taxa de realização de trabalho mecânico sobre este corpo (potência mecânica das forças atuando sobre o corpo) mais a taxa de energia transmitida na forma de calor (calor transmitido por unidade de tempo pela fronteira + geração interna de calor).

Primeira Lei da Termodinâmica - Forma Integral

A quantidade q representa o vetor fluxo de calor por unidade de tempo e área e \dot{q} representa a taxa de geração de calor por unidade de tempo e volume.

$$\frac{d}{dt}\int_{\Omega_t}\rho\left[u+\frac{1}{2}vv\right]dV = \int_{\partial\Omega_t}(Tn)vdS + \int_{\Omega_t}\rho gvdV + \int_{\partial\Omega_t}-qndS + \int_{\Omega_t}\dot{q}dV$$

$$\int_{\partial\Omega_t}(Tn)vdS o$$
 potência mecânica das forças de superfície (contato) $\int_{\Omega_t}
ho gvdV o$ potência mecânica das forças de corpo $\int_{\partial\Omega_t}qndS o$ fluxo de calor cruzando a fronteira do corpo $\int_{\Omega_t}\dot{q}dV o$ taxa de geração interna de calor (energia)

Com o auxílio do Teorema do Transporte de Reynolds é possível reescrever a equação da energia como:

$$\int_{\Omega_{t}} \left[\frac{D}{Dt} \left[\rho \left(u + \frac{1}{2} v v \right) \right] + \rho \left(u + \frac{1}{2} v v \right) div v \right] dV =
= \int_{\partial \Omega_{t}} (T n) v dS + \int_{\Omega_{t}} \rho g v dV + \int_{\partial \Omega_{t}} -q n dS + \int_{\Omega_{t}} \dot{q} dV$$

Uma vez que

$$\begin{split} \frac{D}{Dt}\left[\rho\left(u+\tfrac{1}{2}\boldsymbol{v}\boldsymbol{v}\right)\right] + \rho\left(u+\tfrac{1}{2}\boldsymbol{v}\boldsymbol{v}\right)\,\mathsf{div}\boldsymbol{v} &= \\ &= \left(\tfrac{D\rho}{Dt} + \rho\mathsf{div}\boldsymbol{v}\right)\left[\left(u+\tfrac{1}{2}\boldsymbol{v}\boldsymbol{v}\right)\right] + \rho\tfrac{D}{Dt}\left(u+\tfrac{1}{2}\boldsymbol{v}\boldsymbol{v}\right) \end{split}$$

Como a Equação da Continuidade é:

$$\frac{D\rho}{Dt} + \rho div v = 0$$

Simplifica-se

$$\int_{\Omega_{t}} \left[\rho \frac{D}{Dt} \left(u + \frac{1}{2} v v \right) \right] dV =
= \int_{\partial \Omega_{t}} (Tn) v dS + \int_{\Omega_{t}} \rho g v dV + \int_{\partial \Omega_{t}} -q n dS + \int_{\Omega_{t}} \dot{q} dV$$

Aplicando-se o Teorema da Divergência

$$\int_{\Omega_{t}} \left[\rho \frac{D}{Dt} \left(u + \frac{1}{2} v v \right) \right] dV =
= \int_{\Omega_{t}} \operatorname{div}(Tv) dV + \int_{\Omega_{t}} \rho g v dV - \int_{\Omega_{t}} \operatorname{div} q dV + \int_{\Omega_{t}} \dot{q} dV$$

Como a região Ω_t é arbitrária, pode-se concluir que a forma local da equação da energia para um corpo contínuo

$$horac{D}{Dt}\left(u+rac{1}{2}oldsymbol{v}oldsymbol{v}
ight)= extit{div}(oldsymbol{T}oldsymbol{v})+
hooldsymbol{g}oldsymbol{v}- extit{div}oldsymbol{q}+\dot{oldsymbol{q}}$$

Substituindo as propriedades do cálculo vetorial e tensorial:

$$div(Tv) = (divT)v + Tgradv$$

е

$$\frac{D}{Dt}\left(u+\frac{1}{2}\boldsymbol{v}\boldsymbol{v}\right)=\frac{D\boldsymbol{v}}{Dt}\boldsymbol{v}$$

Reescreve-se

$$ho rac{Du}{Dt} +
ho rac{Dv}{Dt}v = (extit{div} au)v + au extit{grad} v +
ho extit{g} v - extit{div} au + \dot{q}$$

Primeira Lei da Termodinâmica - Forma Diferencial

Sendo a Equação da Quantidade de Movimento Linear na forma diferencial

$$ho rac{Doldsymbol{v}}{Dt} = dioldsymbol{v}oldsymbol{T} +
ho oldsymbol{g}$$

Finalmente a Equação da Energia na forma diferencial se reduz a

$$ho rac{Du}{Dt} = T gradv +
ho gv - div q + \dot{q}$$

ou

$$ho\left(rac{\partial u}{\partial t} + v \operatorname{grad} u
ight) = -\operatorname{div} q + T.D + \dot{q}$$

Sendo D a parte simétrica do gradiente de velocidade

Equação do Calor

Sendo a equação da energia em sua configuração local

$$\rho\left(\frac{\partial u}{\partial t} + (\operatorname{grad} u)v\right) = -\operatorname{div} q + T.D + \dot{q}$$

Supondo corpo rígido em repouso, ou seja, velocidade nula, tem-se

$$\rho \frac{\partial u}{\partial t} = -\operatorname{div} \mathbf{q} + \dot{\mathbf{q}}$$

Tratando-se de corpo rígido, o calor específico a volume constante é função apenas da temperatura, logo

$$\rho c \frac{\partial T}{\partial t} = -div q + \dot{q}$$

Equação do Calor

Levando-se em conta a equação empírica de Fourier, onde k é a condutividade térmica do material

$$q = -kgradT$$

A equação geral da condução de calor para um corpo rígido, isotrópico em repouso é dada por

$$\rho c \frac{\partial T}{\partial t} = div(kgradT) + \dot{q}$$

A equação acima requer condições iniciais e de contorno como será apresentado com maior riqueza de detalhes em Transferência de Calor I. Vale ressaltar que o calor é representado como uma Equação Diferencial Parcial Parabólica: $\nabla^2 u = \frac{1}{\lambda} \frac{\partial u}{\partial t}$

A primeira lei da termodinâmica empregada nos cursos de termodinâmica clássica, para volumes de controle é um caso particular da equação geral da energia.

$$\frac{d}{dt} \int_{\Omega_t} \rho \left[u + \frac{1}{2} v v \right] dV = \int_{\partial \Omega_t} (Tn) v dS + \int_{\Omega_t} \rho g v dV + \int_{\partial \Omega_t} -q n dS + \int_{\Omega_t} \dot{q} dV$$

Considerando que $oldsymbol{g}=-oldsymbol{g} rad\phi$, tal qual $oldsymbol{g}=-oldsymbol{g} oldsymbol{k}$, $\phi=oldsymbol{g} oldsymbol{z}$ tem-se:

$$\int_{R} \rho g v dV = \int_{R} \rho g r a d\phi v dV = -\int_{R} \left[div(\rho \phi v) - \phi div(\rho v) \right] dV =
= -\int_{\partial R} (\rho \phi v) n dS + \int_{R} \phi div(\rho v) dV = -\int_{\partial R} (\rho \phi) (v n) dS - \int_{R} \phi \frac{\partial \rho}{\partial t} dV$$

Logo

$$\frac{d}{dt} \int_{R} \rho \left[u + \frac{1}{2} v v \right] dV + \int_{\partial R} \rho \left[u + \frac{1}{2} v v \right] (vn) dS =
= -\int_{\partial R} (\rho \phi) (vn) dS - \int_{R} \phi \frac{\partial \rho}{\partial t} dV + \int_{\partial \Omega_{t}} Tnv dS - \int_{\partial \Omega_{t}} qn dS + \int_{\Omega_{t}} \dot{q} dV$$

Como ϕ independe do tempo, agrupando-se os termos

$$\frac{d}{dt} \int_{R} \rho \left[u + \frac{1}{2} v v + \phi \right] dV + \int_{\partial R} \rho \left[u + \frac{1}{2} v v + \phi \right] (v n) dS =
= \int_{\partial R} T n v dS - \int_{\partial R} q n dS + \int_{R} \dot{q} dV$$

Separando-se a potência das forças de pressão das demais forças

$$\frac{d}{dt} \int_{R} \rho \left[u + \frac{1}{2} v v + \phi \right] dV + \int_{\partial R} \rho \left[u + \frac{1}{2} v v + \phi \right] (v n) dS =
= \int_{\partial R} -\rho n v dS + \int_{\partial R} (T + \rho \mathbf{1}) n v dS - \int_{\partial R} q n dS + \int_{R} \dot{q} dV$$

Sendo a entalpia específica

$$h=u+\frac{p}{\rho}$$

Reescreve-se

$$\frac{d}{dt} \int_{R} \rho \left[u + \frac{1}{2} ||v||^{2} + gz \right] dV + \int_{\partial R} \rho \left[h + \frac{1}{2} ||v||^{2} + gz \right] (vn) dS =
= \int_{\partial R} (T + \rho \mathbf{1}) nv dS - \int_{\partial R} qn dS + \int_{R} \dot{q} dV$$

Aplicando-se o teorema da divergência e desprezando a parcela referente à condução de calor

$$\frac{d}{dt} \int_{R} \rho \left[u + \frac{1}{2} ||v||^{2} + gz \right] dV + \int_{\partial R} \rho \left[h + \frac{1}{2} ||v||^{2} + gz \right] (vn) dS =
= \int_{\partial R} \operatorname{div} (Tv + pv) dV + \int_{R} \dot{q} dV$$

Para um volume de controle fixo a equação acima é encontrada nos livros de termodinâmica clássica na forma

$$\frac{dE_{\Omega}}{dt} + \sum \dot{m}_{s}e_{s} - \sum \dot{m}_{e}e_{e} = \dot{Q}_{\Omega} - \dot{W}_{\Omega}$$

As seguintes relações foram realizadas:

$$rac{dE_{\Omega}}{dt}\equivrac{d}{dt}\int_{R}
ho\left[u+rac{1}{2}\left|\left|oldsymbol{v}
ight|
ight|^{2}+gz
ight]dV$$

$$\dot{m}_{s} \equiv \int_{\mathsf{sa\'ida}}
ho(oldsymbol{v}oldsymbol{n}) \mathsf{d} \mathcal{S}$$

$$e_{s}\equiv\left[h+rac{1}{2}\left|\left|oldsymbol{v}
ight|
ight|^{2}+gz
ight]_{\mathsf{sa\'ida}}$$

$$\dot{m}_{\rm e} \equiv \int_{\rm entrada} \rho(\boldsymbol{v}\boldsymbol{n}) dS$$

$$e_{\mathsf{e}} \equiv \left[h + rac{1}{2} \left| \left| oldsymbol{v}
ight|
ight|^2 + oldsymbol{\mathsf{g}} oldsymbol{\mathsf{z}}
ight]_{\mathsf{ent}\,\mathsf{rad}\,\mathsf{a}}$$

$$\dot{Q}_{\Omega} \equiv \int_{R} \dot{q} dV$$

$$\dot{W}_{\Omega} \equiv \int_{P} div (Tv + pv) dV$$

Ponderações

Sistemas

$$e_2-e_1=u_2-u_1+rac{1}{2}v_2^2-rac{1}{2}v_1^2+gz_2-gz_1+\left(e_2'-e_1'
ight)$$

Volume de Controle

Inserção da parcela referente a energia adicionada ao volume de controle

$$\theta = P\nu + e$$

$$\theta_2 - \theta_1 = P_2 \nu_2 - P_1 \nu_1 + u_2 - u_1 + \frac{1}{2} v_2^2 - \frac{1}{2} v_1^2 + g z_2 - g z_1 + (e_2' - e_1')$$

Sendo $h = u + P\nu$

$$\theta_2 - \theta_1 = h_2 - h_1 + \frac{1}{2}v_2^2 - \frac{1}{2}v_1^2 + gz_2 - gz_1 + (e_2' - e_1')$$

Ponderações

Transporte de energia no volume de controle é obtida pela integração

$$E = \int_{m_i} \theta dm_i = \int_{m_i} \left(h_i + \frac{1}{2} v_i^2 + g z_i \right) dm_i$$

$$E = \int_{\Omega}
ho e dV = \int_{\Omega}
ho \left(h_i + rac{1}{2} v_i^2 + g z_i
ight) dV_i$$

Esquema de Poincaré

Primeira lei da termodinâmica no âmbito da transferência de calor aplicada a ciclos termodinâmicos. A partir de observações de Joule e Rowland, Poincaré afirmou que a transferência de trabalho é igual a de calor num ciclo completo.

$$\oint \delta W = \oint \delta Q$$

Esquema de Carathéodory

Primeira lei da termodinâmica no âmbito da transferência de trabalho e configuração adiabática.

$$dE = -\delta W_{\rm adiabático}$$

Sob o esquema Caratheodory, a transferência de calor é derivada a partir da soma $dE+\delta W$ e a lei zero é definida para $\delta Q=0$ na presença de uma parede adiabática.

Esquema de Keenan e Shapiro

Primeira lei da termodinâmica no âmbito da temperatura, transferência de calor e trabalho nulo. A partir da observação de Poincaré para sistema adiabático, Keenan e Shapiro analisaram um sistema supondo estrutura isolada e fixa de trabalho nulo.

$$dE = \delta Q_{\rm trabalho\ nulo}$$

Como um conceito derivado, a interação de trabalho é definida como a diferença $\delta Q - dE$, ou

$$\delta W = \delta Q - \delta Q_{
m trabalho\ nulo}$$

Apresentação Estruturada da Primeira Lei

Structure	Poincaré [18]	Carrathéodory [44]	Keenan and Shapiro's Second Method [43]
Primary concepts	Work transfer Temperature Heat transfer	Work transfer Adiabatic boundary	Temperature Heat transfer Zero-work boundary
The first law	$\oint \delta W = \oint \delta Q$	$\int_{1}^{2} \delta W_{\text{adiabatic}} = f(1, 2)$	$\int_{1}^{2} \delta Q_{\text{zero-work}} = f(1, 2)$
Definition of the infinitesimal change in property E	$\delta Q - \delta W$	$-\delta W_{ m adiabatic}$	$\delta Q_{ m zero-work}$
Derived definition of heat transfer	_	$\delta W - \delta W_{ m adiabatic}$	
Derived definition of work transfer	_	_	$\delta Q - \delta Q_{ m zero-work}$
Other derived concepts	Adiabatic boundary Zero-work boundary	Heat transfer Temperature Zero-work boundary	Work transfer Adiabatic boundary

Recapitulando ...

Uma turbina Pelton operando nominalmente com velocidade de escoamento v=i+j tem condições definidas em condições.

Realize uma análise global e determine a taxa de energia produzida no dispositivo e adicionada ao gerador como potência de eixo.

Recapitulando ...

Vídeo 01

Someone's sitting in the shade today because someone planted a tree a long time ago

Warren Buffett

64 / 64