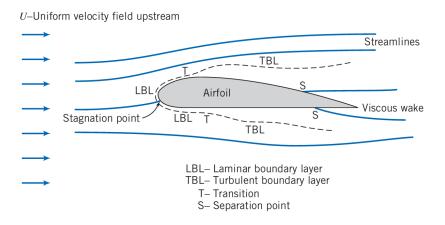
Mecânica dos Fluidos ESCOAMENTO EXTERNO, VISCOSO E INCOMPRESSÍVEL

R. Sobral

DEPARTAMENTO DE ENGENHARIA MECÂNICA

rodolfo.sobral@cefet-rj.br



Programa do Curso - Avaliação 02

- Escoamento invíscido
- Escoamento interno
- Escoamento externo
- Escoamento compressível

Escoamento ao Redor do Aerofólio

Escoamento externo é qualquer escoamento sobre corpos imersos em fluido sem fronteiras

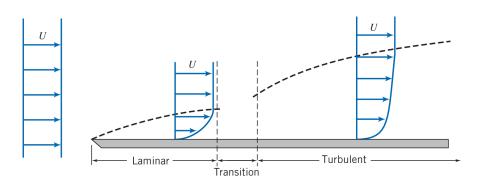
Era Moderna - Aerodinâmica

- ullet 1755 $egin{array}{ll} \rightarrow & {\sf Escoamento\ Invíscido\ (Leonhard\ Euler);} \end{array}$
- ullet 1845 ullet Campos do Escoamento (Navier-Stokes);
- 1904 \rightarrow Camada Limite (Ludwig Prandtl);

JetFoil/HydroFoil

VÍDEO 01

VÍDEO 02

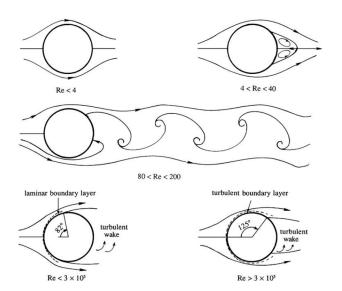

VÍDEO 03

https:

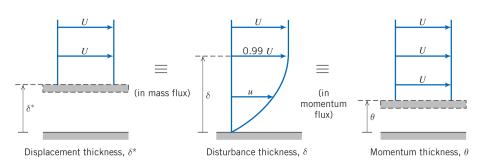
//www.boeing.com/history/products/jetfoil-hydrofoil.page

Camada Limite sobre Placa Plana

Camada limite região adjacente a superfície sólida na presença de tensões viscosas


Separação Laminar e Turbulenta - Bola de Boliche

Forças de Inércia e Forças Viscosas



Fatores de Transição da Camada Limite

- Gradiente de pressão;
- Rugosidade superficial;
- Transferência de calor;
- Forças de campo;
- Perturbações de corrente livre.

Espessura Camada Limite

Espessura Camada Limite

Definição usual adota a **espessura de perturbação**, definindo-a como distância da superfície na qual a velocidade se situa dentro de 1% da velocidade da corrente livre, ou seja, u=0.99U.

As demais definições baseiam-se apenas no princípio de que a camada limite retarda o escoamento do fluido, os fluxos de massa e de quantidade de movimento são menores do que eles seriam na ausência da camada limite, tal definição contribui para o equacionamento.

Espessura de Deslocamento

Imaginemos agora que, fluido permaneça com velocidade $\it U$ e a superfície da placa mova-se pra cima, reduzindo ambos os fluxos.

 δ^* sendo a distância que a placa seria deslocada para que a perda de \dot{m} fosse equiparada à perda ocasionada pela camada limite.

Sem camada limite

$$\dot{m} = \int_0^\infty \rho U \, dy w$$

Com camada limite

$$\dot{m} = \int_0^\infty \rho u \, dyw$$

Perda devido camada limite

$$\dot{m} = \int_0^\infty \rho \left(U - u \right) \, dyw$$

Espessura de Deslocamento

Para velocidade constante U e placa deslocada para cima de uma distância de δ^* , a perda de \dot{m} seria $\rho U \delta^* w$, igualando-se a perda da camada limite

$$\rho U \delta^* w = \int_0^\infty \rho \left(U - u \right) \, dy w$$

para escoamento incompressível,

$$\delta^* = \int_0^\infty \left(1 - \frac{u}{U}\right) dy \approx \int_0^\delta \left(1 - \frac{u}{U}\right) dy$$

Espessura de Quantidade de Movimento

Distância em que a placa seria movida de modo que a perda da quantidade de movimento fosse equivalente à perda real causada pela camada limite.

Sem camada limite

$$\dot{QM} = \int_0^\infty \rho u U \, dyw$$

Com camada limite

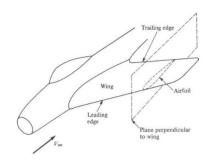
$$\dot{QM} = \int_0^\infty \rho u^2 \, dyw$$

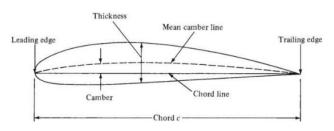
Perda devido camada limite

$$\dot{QM} = \int_0^\infty \rho u (U - u) \ dyw$$

Espessura de Quantidade de Movimento

Para velocidade constante U e placa deslocada para cima de uma distância de θ , a perda de QM seria $\rho U^2 \theta w$, igualando-se a perda da camada limite


$$\rho U^2 \theta w = \int_0^\infty \rho u \left(U - u \right) \, dy w$$


para escoamento incompressível,

$$heta = \int_0^\infty rac{u}{U} \left(1 - rac{u}{U}
ight) dy pprox \int_0^\delta rac{u}{U} \left(1 - rac{u}{U}
ight) dy$$

Nomenclatura

Corpos Imersos

Na presença de movimento relativo entre corpo sólido e fluido circundante viscoso haverá sempre uma força resultante F, decomposta em forças de arrasto (F_D) e de sustentação (F_L) .

Arrasto

Componente paralela ao movimento, abordado na análise dimensional como,

$$C_D = \frac{F_D}{1/2\rho v^2 A}$$

Sem compressibilidade

$$C_D = f(Re)$$

Com compressibilidade

$$C_D = f(Re, Fr, M)$$

Força de arrasto total é a soma dos arrastos de atrito e pressão

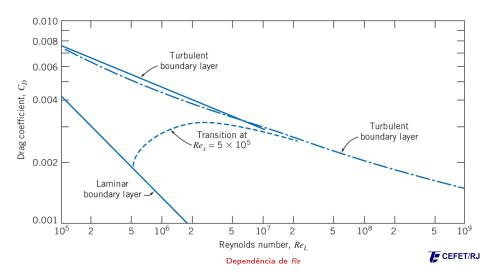
Arrasto de Atrito - Placa Plana Paralela ao Escoamento

Sendo gradiente de pressão nulo, as forças de pressão perpendiculares à placa não contribuindo para o arrasto, tem-se arrasto de atrito.

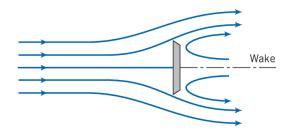
$$F_D = \int_{\partial \Omega} \tau_w dS$$

$$C_D = \frac{F_D}{1/2\rho v^2 A} = \frac{\int_{\partial \Omega} \tau_w dS}{1/2\rho v^2 A}$$

Escoamento Laminar

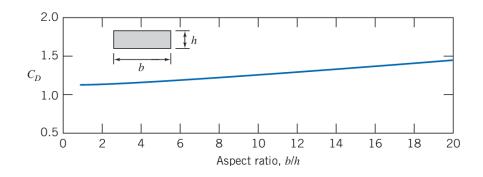

$$C_f = \frac{\tau_w}{1/2\rho U^2} = \frac{0.664}{\sqrt{Re_x}}, \qquad C_D = \frac{1.33}{\sqrt{Re_L}}$$

Escoamento Turbulento


$$C_f = rac{ au_w}{1/2
ho U^2} = rac{0.0594}{\sqrt{Re_x^{1/5}}}, \qquad C_D = rac{0.0742}{\sqrt{Re_L^{1/5}}}$$

Coeficiente de Arrasto de Atrito X Reynolds

Arrasto de Pressão - Placa Plana Normal ao Escoamento



Tensão cisalhante na parede não contribui com arrasto.

$$F_D = \int_{\partial \Omega} p dS$$

Coeficiente de Arrasto de Pressão X Razão de Aspecto

Independência de Re

Coeficiente de Arrasto X Objetos Selecionados

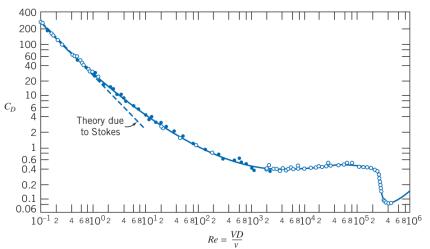
Drag Coefficient Data for Selected Objects $(Re \ge 10^3)^a$

Object	Diagram		$C_D(Re \gtrsim 10^3)$
Square prism	_	$b/h = \infty$	2.05
	b	b/h = 1	1.05
	h		
Disk			1.17
Ring			1.20^{b}
Hemisphere (open end	<u>(0)</u>		1.42
facing flow)			
Hemisphere (open end			0.38
facing downstream)			
C-section (open side facing flow)			2.30
C-section (open side	\sim		1.20
facing downstream)			

Arrasto de Atrito e de Pressão - Esfera e Cilindro

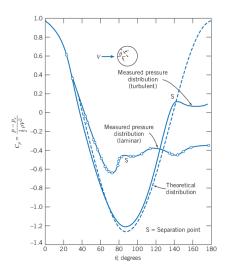
Stokes modelou que escoamentos com $Re \leq 1$,

$$F_D = 3\pi\mu v d$$


e o arrasto,

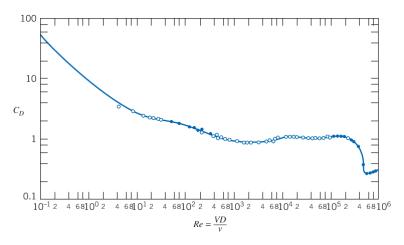
$$C_D = \frac{24}{Re}$$

O arrasto varia diretamente com tamanho da esteira



C_D Esfera X Reynolds

Distribuição Pressão Esfera X Ângulo θ


Re<1 não há separação do escoamento sobre uma esfera, a esteira é laminar e o arrasto é de atrite CEFET/RJ

Arrasto de Atrito e de Pressão

VÍDEO 04

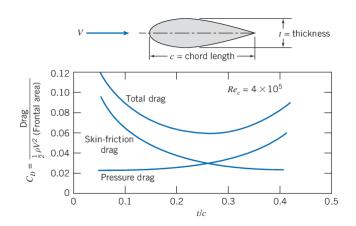
C_D Cilindro X Reynolds

Situações Reais de Arrasto

Em numerosas situações de escoamentos reais ocorrem interações com objetos e superfícies vizinhas. O arrasto pode ser reduzido em torno de 80% quando se obtém um espaçamento ótimo entre vizinhos.

VÍDEO 05

Carenagem


Objetiva reduzir gradiente de pressão adverso que ocorre na espessura máxima do corpo, retardando a separação da camada limite e reduzindo arrasto de pressão.

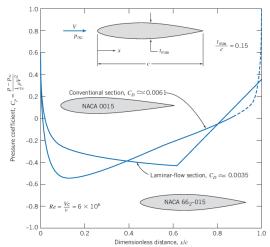
Adição de seção posterior carenada aumenta a área superficial do corpo, causando aumento do **arrasto por atrito** superficial.

Arrasto otimizado

C_D Carenagem X Razão de Espessura - $C_{D_{friction}}$ e $C_{D_{pressure}}$

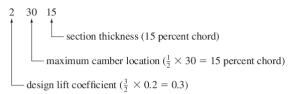
 C_D mínimo de 0.06 pata t/c=0.25, valor %80 menor que o arrasto de um cilindro circular de mesma espessura CEFET/RJ

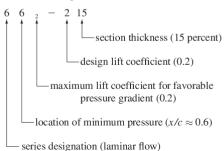
National Advisory Committee for Aeronautics - NACA


Em 1930 surgiu o interesse em aerofólios de baixo arrasto, a *NACA* desenvolveu diversas séries de aerofólios cuja transição de escoamento postergava-se até 65% da corda a partir do nariz do aerofólio.

NACA é predecessora da NASA

C_p Airfoil X Distância Adimensional


Pressão e arrasto para aerofólios simétricos, transição para gradiente de pressão adverso NACA 0015 em x/c=0.13 (próximo da espessura máxima), e NACA 66 - 015 em x/c=0.63



Designação de Forma

Conventional — 23015

Laminar Flow— $66_2 - 215$

CEFET/RJ

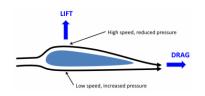
Aerofólios de linha curva são denominados cambados, aerofólios cambados dão lift com ataque nulo rodolfo.sobral@cefet-rj.br

Arrasto Aerodinâmico

Redução do arrasto aerodinâmico faz-se importante não apenas na aviação, veículos rodoviários tem interesse em economia de combustível afim de redução de custos de fretes e/ou redução de passagens.

Limitação do comprimento total destes veículos, traseiras inteiramente carenadas não são práticas, exceto em veículos de alta performance.

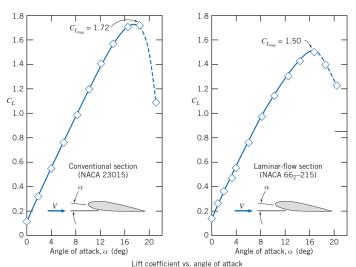
Sustentação


Componente perpendicular ao movimento, abordado na análise dimensional como,

$$C_L = \frac{F_L}{1/2\rho v^2 A_p}$$

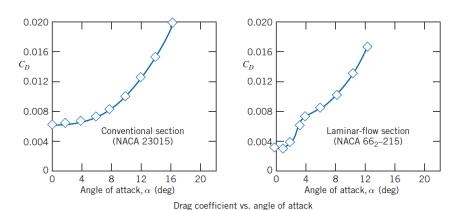
Sustentação Aerodinâmica

Dependente de Reynolds e do ângulo de ataque α (entre a corda e o vetor velocidade da corrente livre).



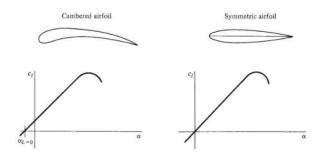
Termos usuais:

- Intradorso
- Extradorso
- Zona de sucção
- Zona de pressão


Lift $\times \alpha$

Aumento do ângulo de ataque, aumenta Δp e o lift até um ponto de máximo (Stall)

$\mathsf{Drag} \times \alpha$



and the standard and a standard and

Aceleração do gradiente adverso, oriunda de elevado ataque, ocasiona o aumento do arrasto

Comparação de Lift - Airfoil Cambado x Airfoil Simétrico

$\alpha={\rm 4^0}$ - Abaixo do Stall - Acoplado

$\alpha=11^{0}$ - Próximo do Stall

$\alpha={\rm 24^0}$ - Acima do Stall - Desacoplado

Stall

VÍDEO 06

Perda aerodinâmica de sustentação, ocorre quando asa do avião/aerofólio excede o ângulo crítico de ataque

XFoil

Software para projeto e análise de aerofólios subsônicos isolados.

- Análise viscosa e invíscida
- Correção de compressibilidade de Karman-Tsien
- Variações de Reynolds e Mach
- Distribuições de pressão
- Deflexão de flap

https://web.mit.edu/drela/Public/web/xfoil/

Someone's sitting in the shade today because someone planted a tree a long time ago

Warren Buffett

